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1 Introduction

The aim of this paper is to provide an overview of the (in our opinion) most
important results on topological entropy, starting from the original defini-
tion by Adler, Konheim, and McAndrew in 1965 up to nowadays. We cite
the corresponding papers in chronological order and restate the theorems
they contain trying to use a unified notation. Since the theory of topological
entropy is closely related to that of metric entropy via the variational prin-
ciple, we also cite some results on metric entropy, which are useful for the
computation or estimation of topological entropy. Our interest is mainly
in results which either concern elementary properties or (preferably gen-
eral) inequalities or formulas for topological entropy. Hence, this survey
excludes large parts of the entropy theory, as e.g., all the work concerning
topological entropy of geodesic flows and relations to curvature, relations
between topological entropy and chaos, entropy of symbolic systems, sym-
bolic extension entropy, and many papers dealing with partial results aim-
ing at Shub’s entropy conjecture. To get an overview of the history of en-
tropy in dynamical systems, we highly recommend the excellent survey of
Anatole Katok [34]. The same author also wrote a survey paper on Shub’s
entropy conjecture, see [32]. Another highly recommended survey on en-
tropy with an emphasis on relations between entropy, Lyapunov exponents
and dimension, written by Lai-Sang Young, can be found under the URL
http://www.math.nyu.edu/~lsy/papers/entropy.pdf, or in [23, Ch. 16].
Further references for the theory of metric and topological entropy are the
books by Alsedà, Llibre, Misiurewicz [2], Katok and Hasselblatt [35], Mañé
[44], Pollicott [60], Robinson [63], Walters [68], and Downarowicz [17].
Finally, we want to remark that this paper has not been peer-reviewed and
hence should not be used as a reference in scientific work. None of the
results but all of the mistakes are due to the author.

2 The Sixties

2.1 Topological Entropy (1965)

In [1], Adler, Konheim and McAndrew introduce the topological entropy
of a continuous map f : X 	 on a compact topological space X:

2.1 Definition:
Let N(U ) denote the minimal cardinality of a subcover of an open cover U
of X, and let H(U ) := log N(U ).1 Define the join of open covers U1, . . . ,Un

1Usually, one takes the logarithm to the base 2. But the choice of the base is not essential,
since its change only results in a constant scaling factor.

http://www.ams.org/mathscinet-getitem?mr=2342699
http://www.ams.org/mathscinet-getitem?mr=0501174
http://www.math.nyu.edu/~lsy/papers/entropy.pdf
http://www.ams.org/mathscinet-getitem?mr=1255515
http://www.ams.org/mathscinet-getitem?mr=1326374
http://www.ams.org/mathscinet-getitem?mr=889254
http://www.ams.org/mathscinet-getitem?mr=1215938
http://www.ams.org/mathscinet-getitem?mr=1792240
http://www.ams.org/mathscinet-getitem?mr=648108
http://www.ams.org/mathscinet-getitem?mr=2809170
http://www.ams.org/mathscinet-getitem?mr=0175106
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by
n∨

i=1

Ui := {U1 ∩ . . . ∩Un : Ui ∈ Ui, i = 1, . . . , n} ,

and let
f−1(U ) :=

{
f−1(U) : U ∈ U

}
for any open cover U of X. Define the topological entropy of f with respect
to an open cover U by2

htop( f ,U ) := lim
n→∞

1
n

H

(
n−1∨
i=0

f−i(U )
)

,

and the topological entropy of f by

htop( f ) := sup
U

htop( f ,U ),

where the supremum is taken over all open covers U of X.

Obviously, htop( f ) ∈ [0, ∞]. The following properties of htop( f ) are shown:

2.2 Theorem:
(i) Topologically conjugate maps have the same topological entropy:

htop( f ) = htop(h ◦ f ◦ h−1),

where h is a homeomorphism.

(ii) For the topological entropy of iterates the following formula holds:

htop( f k) = k · htop( f ) for all k ∈N.

(iii) If f is a homeomorphism, then

htop( f k) = |k| · htop( f ) for all k ∈ Z.

(iv) Assume that X and Y are compact topological spaces and f : X 	
and g : Y 	 are continuous maps. Then

htop( f × g) ≤ htop( f ) + htop(g).

If, in addition, X and Y are Hausdorff,3 then

htop( f × g) = htop( f ) + htop(g).

2Note that the limit in the definition of htop( f ,U ) exists because of subadditivity.
3In the original paper, it was claimed that equality holds without the additional property

of X and Y being Hausdorff. But in [22] (“The Product Theorem for Topological Entropy”),
Goodwyn showed that the proof of Adler, Konheim and McAndrew does not work without
this assumption.

http://www.ams.org/mathscinet-getitem?mr=0283782
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(v) Let X1, X2 ⊂ X be two closed subsets of X with X1 ∪ X2 = X and
f (Xi) ⊂ Xi, i = 1, 2. Then

htop( f ) = max
{

htop( f |X1), htop( f |X2)
}

.

(vi) Let∼ be an equivalence relation on X respected by f , and let f̃ be the
quotient map on X/∼. Then

htop( f̃ ) ≤ htop( f ).

(vii) If X is a compact metric space, then

htop( f ,Un)→ htop( f ),

if (Un)n≥1 is a sequence of open covers whose diameters converge to
zero and such that Un+1 is a refinement of Un for all n ∈N.

2.3 Remark:
Item (vi) can be restated by saying that if two maps f : X 	 and g : Y 	
satisfy the semiconjugacy identity h ◦ f = g ◦ h with a continuous surjection
h : X → Y, then htop(g) ≤ htop( f ).

2.2 On the Topological Entropy of a Dynamical System (1969)

In [30], Ito proves the following result, which was formulated as a conjec-
ture by Adler, Konheim and McAndrew [1]:

2.4 Theorem:
Let ϕ : R× X → X, (t, x) 7→ ϕt(x), be a continuous flow on a compact
metric space X. Then

htop(ϕt) = |t| · htop(ϕ1) for all t ∈ R.

2.3 Topological Entropy bounds Measure-Theoretic Entropy
(1969)

In [21], Goodwyn proves the following theorem, which later was improved
by the variational principle (already conjectured in Adler, Konheim and
McAndrew [1]). The latter states that the topological entropy equals the
supremum over the metric entropies with respect to all invariant Borel
probability measures:

2.5 Theorem:
Let X be a compact metric space, f : X 	 a continuous map, and µ an
f -invariant Borel probability measure on X. Then

hµ( f ) ≤ htop( f ),

i.e., the metric entropy is bounded from above by the topological entropy.

http://www.ams.org/mathscinet-getitem?mr=0272981
http://www.ams.org/mathscinet-getitem?mr=0175106
http://www.ams.org/mathscinet-getitem?mr=0492179
http://www.ams.org/mathscinet-getitem?mr=0175106
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3 The Seventies

3.1 Topological Entropy and Axiom A (1970)

In [7], Bowen proves a couple of important results:

3.1 Theorem:
(i) Let X be a compact metric space and f : X 	 continuous. Then

htop( f ) = htop( f |Ω( f )),

where Ω( f ) denotes the non-wandering set4 of f .

(ii) If f is a diffeomorphism on a compact manifold which satisfies Ax-
iom A5, then f has a neighborhood N f in Diff(M) such that htop( f ) ≤
htop(g) for all g ∈ N f .

(iii) Let f be an expansive homeomorphism6 of a compact metric space.
Then

htop( f ) ≥ lim sup
n→∞

1
n

log Pn( f ),

where Pn( f ) is the number of fixed points of f n.

(iv) Let f be a C1-diffeomorphism (or C1-map) on a smooth compact man-
ifold satisfying Axiom A. Then

htop( f ) = lim sup
n→∞

1
n

log Pn( f )

and htop( f ) > 0 unless Ω( f ) is finite.

3.2 Remark:
A particularly short proof of (i) can be found in the book Alsedà, Llibre,
Misiurewicz [2].

3.2 An Estimate from above for the Entropy and the Topological
Entropy of a C1-diffeomorphism (1970)

In [31], Ito proves the following theorem, which gives an upper estimate of
the topological entropy of a diffeomorphism:

4A point x ∈ X is said to be non-wandering with respect to f if for every neighborhood
U of x there is n ≥ 1 such that f n(U) ∩U 6= ∅. The non-wandering set of f is the set of all
non-wandering points.

5 f satisfies Axiom A if the non-wandering set Ω( f ) is hyperbolic and the set of periodic
points is dense in Ω( f ).

6That means, there is δ > 0 such that sup−∞<i<∞ d( f i(x), f i(y)) > δ if x 6= y.

http://www.ams.org/mathscinet-getitem?mr=2620060
http://www.ams.org/mathscinet-getitem?mr=1255515
http://www.ams.org/mathscinet-getitem?mr=0272981


3 THE SEVENTIES 8

3.3 Theorem:
Let (M, g) be a compact n-dimensional Riemannian manifold and f : M 	
a C1-diffeomorphism. Then the topological entropy of f is finite with

htop( f ) ≤ n log sup
p∈M

∥∥∥D f−1(p)
∥∥∥ .

3.4 Remarks:
(i) Since htop( f ) = htop( f−1), Ito’s estimate also implies that

htop( f ) ≤ n log sup
p∈M
‖D f (p)‖ .

(ii) There are earlier estimates of a similar form for the metric entropy of
a diffeomorphism (see, e.g., Kushnirenko [41]).

3.3 Entropy for Group Endomorphisms and Homogeneous
Spaces (1971)

In [8], Bowen defines the topological entropy htop,d( f ) of a uniformly con-
tinuous map f : X 	 on an arbitrary metric space (X, d) via (n, ε)-spanning
and (n, ε)-separated sets. In general, this quantity depends on the metric
d. But for X being compact it coincides with the topological entropy as
defined by Adler, Konheim and McAndrew [1].

3.5 Definition:
Let (X, d) be a metric space and f : X → X a uniformly continuous map.
For each n ∈N,

dn, f (x, y) := max
0≤i≤n−1

d( f i(x), f i(y))

defines a metric on X, topologically equivalent to d. A set E ⊂ X is (n, ε)-
separated if for all x, y ∈ E with x 6= y it holds that dn, f (x, y) > ε. A set
F ⊂ X (n, ε)-spans another set K ⊂ X if for every x ∈ K there is y ∈ F with
dn, f (x, y) ≤ ε. For a compact set K ⊂ X let rn(ε, K) be the smallest cardinal-
ity of a set which (n, ε)-spans K, and let sn(ε, K) be the largest cardinality of
an (n, ε)-separated set contained in K. Define

r f (ε, K) := lim sup
n→∞

1
n

log rn(ε, K),

s f (ε, K) := lim sup
n→∞

1
n

log sn(ε, K).

It holds that
htop,d( f , K) := lim

ε↘0
r f (ε, K) = lim

ε↘0
s f (ε, K),

http://www.ams.org/mathscinet-getitem?mr=0177405
http://www.ams.org/mathscinet-getitem?mr=0274707
http://www.ams.org/mathscinet-getitem?mr=0175106
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and one defines
htop,d( f ) := sup

K⊂X
compact

htop,d( f , K).

Bowen proves the following properties of htop,d( f ):

3.6 Theorem:
(i) If d1 and d2 are uniformly equivalent metrics7 on X, then

htop,d1( f ) = htop,d2( f ).

(ii) If X is compact, htop,d( f ) does not depend on the metric d and

htop,d( f ) = htop( f ).

(iii) For iterates it holds that

htop,d( f k) = k · htop,d( f ) for all k ∈N.

(iv) Let f : X 	 and g : Y 	 be uniformly continuous maps on metric
spaces (X, dX) and (Y, dY), respectively. Define the product metric

dX×Y((x1, y1), (x2, y2)) = max {dX(x1, x2), dY(y1, y2)}

on X×Y. Then8

htop,dX×Y( f × g) ≤ htop,dX ( f ) + htop,dY( f ).

Bowen also proves a special case of the variational principle for group endo-
morphisms:

3.7 Theorem:
Let G be a compact metrizable group, A : G 	 a surjective endomorphism,
and µ the normalized Haar measure on G. Then

hµ(Rg ◦ A) = hµ(A) = htop,d(A)

for each g ∈ G, where Rg denotes the right translation by g.

Moreover, he shows the following estimate, which generalizes Ito’s esti-
mate from [31]:

7Two metrics d1 and d2 are called uniformly equivalent if the identity maps id :
(X, d1)→ (X, d2) and id : (X, d2)→ (X, d1) are uniformly continuous.

8In the original paper, Bowen stated that equality holds in the product theorem (state-
ment (iv)), but in 1973, an Erratum appeared (see Bowen [10]), where this was corrected.

http://www.ams.org/mathscinet-getitem?mr=0272981
http://www.ams.org/mathscinet-getitem?mr=0320271
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3.8 Theorem:
Let f : M 	 be a C1-map on an n-dimensional Riemannian manifold (M, g).
Then

htop,d( f ) ≤ max

{
0, n log sup

p∈M
‖D f (p)‖

}
,

where d is the Riemannian distance, and the right-hand side may be ∞.

He also computes the topological entropy of linear maps on Rn:

3.9 Theorem:
If f : Rn 	 is a linear map and d is induced by a norm, then

htop,d( f ) = ∑
λ∈σ( f )

max{0, dλ log |λ|},

where σ( f ) denotes the spectrum of f , and dλ is the algebraic multiplicity
of the eigenvalue λ.

3.10 Remark:
Note that from the above formula it follows that in general the identity
htop,d( f ) = htop,d( f−1) does not hold if f is invertible.

3.11 Corollary:
If f is an endomorphism of a Lie group G and d is a right-invariant metric
on G, then

htop,d( f ) = ∑
λ∈σ(D f (e))

max{0, dλ log |λ|},

where e denotes the neutral element in G.

3.12 Theorem:
Let (X, dX) and (Y, dY) be compact metric spaces, T : X 	 and S : Y 	
continuous maps, and π : X → Y a surjective continuous mapping such
that π ◦ T = S ◦ π. Then

htop,dX (T) ≤ htop,dY(S) + sup
y∈Y

htop,dX (T, π−1(y)).

3.13 Remark:
Note that the above theorem implies that semiconjugate maps have the
same topological entropy if the semiconjugacy is finite-to-one.

Finally, Bowen generalizes Ito’s result from [30]:

http://www.ams.org/mathscinet-getitem?mr=0272981
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3.14 Theorem:
Let X be a metric space and ϕ : R+

0 × X → X a uniformly continuous
semiflow9 on X. Then

htop,d(ϕt) = t · htop,d(ϕ1) for all t ≥ 0.

3.15 Remark:
In Hood [29], Bowen’s definition of topological entropy for uniformly con-
tinuous maps on metric spaces is generalized to uniformly continuous
maps on uniform spaces.

3.4 Relating Topological Entropy and Measure Entropy (1971)

In [20], Goodman proves the variational principle in the following general
form:

3.16 Theorem:
Let X be a compact Hausdorff space and f : X 	 a continuous map. Then

htop( f ) = sup
µ

hµ( f ),

where the supremum is taken over all regular f -invariant Borel probability
measures on X.

3.17 Remark:
Note that the statement of the theorem can be strenghtened by taking the
supremum only over the ergodic invariant measures.10 In Misiurewicz
[51], an alternative, shorter proof of the variational principle can be found,
which is nowadays more popular.

3.5 On the Relations among various Entropy Characteristics of
Dynamical Systems (1971)

In [16], Dinaburg proves the variational principle for homeomorphisms of
finite-dimensional spaces:

3.18 Theorem:
Let X be a compact metric space of finite topological dimension and f : X 	
a homeomorphism. Then

htop( f ) = sup
µ

hµ( f ),

9The semiflow ϕ is called uniformly continuous if for all t0 > 0 and ε > 0 there is δ > 0
such that d(x, y) < δ implies d(ϕt(x), ϕt(y)) < ε for all t ∈ [0, t0].

10An f -invariant measure µ is called ergodic if f−1(A) = A for a measurable set A im-
plies µ(A) = 0 or µ(A) = 1.

http://www.ams.org/mathscinet-getitem?mr=0353282
http://www.ams.org/mathscinet-getitem?mr=0289746
http://www.ams.org/mathscinet-getitem?mr=609895
http://www.ams.org/mathscinet-getitem?mr=0286091
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where the supremum is taken over all ergodic f -invariant Borel probability
measures on X.

Amongst others, he also proves the following result:

3.19 Theorem:
Let (X, d) be a compact metric space of finite topological dimension and
f : X 	 an expansive homeomorphism. Then there exists an f -invariant
Borel probability measure µ on X such that htop( f ) = hµ( f ).

In this paper, Dinaburg also introduces the alternative characterization of
topological entropy via (n, ε)-spanning and (n, ε)-separated sets (indepen-
dently of Bowen). He writes that the idea for this relation stems from Kol-
mogorov.

3.6 Entropy-Expansive Maps (1972)

In [9], Bowen defines the notion of an entropy-expansive or h-expansive map
(or homeomorphism), which generalizes the notion of an expansive map (or
homeomorphism):

3.20 Definition:
Let f : X 	 be a homeomorphism on a metric space (X, d). For all x ∈ X
and ε > 0 let

Γε(x) := {y ∈ X : d( f n(x), f n(y)) ≤ ε for all n ∈ Z} .

Then f is called h-expansive if there exists an ε > 0 such that
htop,d( f , Γε(x)) = 0 for all x ∈ X.11

Examples for h-expansive maps are expansive maps, linear maps on Eu-
clidean space, endomorphisms of Lie groups and many more.12 Bowen
proves two results for an entropy-expansive map (or homeomorphism)
f : X 	 on a compact metric space (X, d):

3.21 Theorem:
In the definition of topological entropy via (n, ε)-spanning sets, one does
not have to take the limit for ε↘ 0. Precisely, it holds that

htop( f ) = htop( f , ε)

for ε > 0 chosen according to the definition of h-expansivity.

11For noninvertible continuous maps Z is replaced by N0 in the definition of Γε(x).
12In [50], Misiurewicz shows the existence of diffeomorphisms which are not h-

expansive. In the same paper, he also constructs examples of Cr-maps for finite r, which
have no invariant measure of maximal metric entropy. Using these examples, he is able to
show that topological entropy is not an upper semicontinuous function of the diffeomor-
phism in the Cr-topology.

http://www.ams.org/mathscinet-getitem?mr=0285689
http://www.ams.org/mathscinet-getitem?mr=0336764


3 THE SEVENTIES 13

3.22 Theorem:
Assume that X has finite topological dimension and µ is an f -invariant
Borel probability measure on X. Then, for the metric entropy of f with
respect to µ it holds that

hµ( f ) = hµ( f ,A),

whenever A is a finite measurable partition of X with sets of diameter at
most ε.

3.7 Topological Entropy for Noncompact Sets (1973)

In [11], Bowen extends the concept of topological entropy. For a continuous
map f : X 	 on a topological space X and for any subset Y ⊂ X he defines
the entropy h( f , Y) in a way which resembles the definition of Hausdorff
dimension. For X being compact and Y = X the new entropy coincides
with the old one, i.e., h( f , X) = htop( f ). If µ is an f -invariant Borel prob-
ability measure and µ(Y) = 1, then hµ( f ) ≤ h( f , Y). Bowen’s definition
reads as follows.

3.23 Definition:
Let X be a topological space and f : X 	 a continuous map. Let Y ⊂ X. If
A is a finite open cover of X and E ⊂ X, we write E � A if E is contained
in an element of A, and {Ei} � A if Ei � A for all i. Let n f ,A(E) be the
biggest nonnegative integer such that

f kE � A for all 0 ≤ k < n f ,A(E).

Put n f ,A(E) = 0 if E � A and n f ,A(E) = ∞ if f kE � A for all k. Now put

DA(E) := exp
(
−n f ,A(E)

)
, DA(E , λ) :=

∞

∑
i=1

DA(Ei)
λ

for E = {Ei}∞
i=1, λ ∈ R. Define a measure mA,λ by

mA,λ(Y) := lim
ε↘0

inf
{

DA(E , λ) :
⋃

Ei ⊃ Y and DA(Ei) < ε
}

.

Notice that mA,λ(Y) ≤ mA,λ′(Y) for λ > λ′ and mA,λ(Y) /∈ {0, ∞} for at
most one λ. Define

hA( f , Y) := inf {λ : mA,λ(Y) = 0} , h( f , Y) := sup
A

hA( f , Y),

where the supremum ranges over all finite open covers of X.

3.24 Remark:
Other papers dealing with extensions of topological entropy to noncom-
pact spaces are Hofer [28], Handel & Kitchens [26], and Patrão [58] (and
many more).

http://www.ams.org/mathscinet-getitem?mr=0338317
http://www.ams.org/mathscinet-getitem?mr=0370542
http://www.ams.org/mathscinet-getitem?mr=1348316
http://www.ams.org/mathscinet-getitem?mr=2718907
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3.8 Topological Entropy and the First Homology Group (1975)

In [45], Manning proves:

3.25 Theorem:
Let f : M 	 be a continuous map on a compact connected smooth manifold
M. Then

htop( f ) ≥ log |λ|

for each eigenvalue λ of the induced map f∗ : H1(M, R) → H1(M, R) on
the first homology group of M over the reals.

3.26 Remark:
This result is related to Shub’s entropy conjecture (formulated in [67] by
M. Shub) which states that for any C1-map f : M 	 of a compact smooth
manifold M, htop( f ) is bounded from below by the logarithm of the spec-
tral radius of the linear map f∗ induced by f on the total homology of M
over the reals. In this generality, the conjecture has neither been proved
nor disproved until today. Further references about the conjecture are Ka-
tok’s survey [32] from 1977, and the more recent papers Marzantowicz &
Przytycki [46, 47] and Saghin & Xia [66].

3.9 Topological Entropy and Degree of Smooth Mappings (1977)

In [54], Misiurewicz and Przytycki prove the following theorem:

3.27 Theorem:
Let f : M 	 be a C1-map of degree ±N on a smooth compact manifold M.
Then

htop( f ) ≥ log N.

Also this result is related to Shub’s entropy conjecture, since the degree of
a map f coincides with the spectral radius of the induced map on the
top-dimensional homology group Hm(M), m = dim M.

The authors also show that the result fails for a C0-map.

3.10 Characteristic Lyapunov Exponents and Smooth Ergodic
Theory (1977)

In [59], Pesin derives a formula for the metric entropy of a C2-
diffeomorphism preserving a smooth measure:

http://www.ams.org/mathscinet-getitem?mr=0650661
http://www.ams.org/mathscinet-getitem?mr=0334284
http://www.ams.org/mathscinet-getitem?mr=0501174
http://www.ams.org/mathscinet-getitem?mr=2403626
http://www.ams.org/mathscinet-getitem?mr=2385703
http://www.ams.org/mathscinet-getitem?mr=2556076
http://www.ams.org/mathscinet-getitem?mr=0458501
http://www.ams.org/mathscinet-getitem?mr=1862379
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3.28 Theorem:
Let M be a compact Riemannian manifold and f : M 	 a C2-
diffeomorphism. Let ν be a smooth13 f -invariant Borel probability measure
on M. For each x ∈ M let χi(x), i = 1, . . . , s(x), be the Lyapunov exponents
at x, and let qi(x) be the multiplicity of χi(x). Moreover, let k(x) be the
number of negative Lyapunov exponents at x. Then

hν( f ) = −
∫ k(x)

∑
i=1

qi(x)χi(x)dν(x).

3.29 Remark:
Since hν( f ) = hν( f−1) and the Lyapunov exponents of f−1 are minus the
Lyapunov exponents of f , Pesin’s formula can also be written in the better
known form

hν( f ) =
∫

∑
i

max{0, qi(x)χi(x)}dν(x).

If, in addition, the measure ν is ergodic, the integrand is constant almost
everywhere, and hence

hν( f ) = ∑
i

max{0, qi(x)χi(x)}

for ν-almost all x ∈ M.

3.30 Remark:
An alternative proof of Pesin’s formula can be found in Mañé [43]. In Qian
& Zhang [62], Pesin’s entropy formula is proved for Axiom A basic sets of
C2-endomorphisms.

3.11 An Inequality for the Entropy of Differentiable Maps (1978)

In [64], Ruelle proves that in Pesin’s formula from [59], the inequality “≤”
still holds if f is only a C1-map preserving a (not necessarily smooth) mea-
sure:

3.31 Theorem:
Let M be a smooth compact manifold and f : M 	 a C1-map. Let µ be an
f -invariant Borel probability measure on M. Then

hµ( f ) ≤
∫

∑
λx

max{0, mxλx}dµ(x),

where λx are the (µ-almost everywhere defined) Lyapunov exponents of x
with associated multiplicities mx.

13A measure on a smooth manifold is called smooth if it is equivalent to a Riemannian
volume measure.

http://www.ams.org/mathscinet-getitem?mr=627789
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3.32 Remark:
Note that the inequality in the above theorem was already proved by Mar-
gulis in the volume-preserving case, although he did not publish this re-
sult. Sometimes it is called the Margulis-Ruelle inequality, or just the Ruelle-
inequality.

3.12 Entropy and the Fundamental Group (1978)

In [12], Bowen proves the following theorems:

3.33 Theorem:
Let f : M 	 be a continuous map on a compact manifold M. Then

htop( f ) ≥ log µ( f∗),

where µ( f∗) is the growth rate of f∗ : π1(M) 	 (the induced endomor-
phism on the fundamental group of M).14

3.34 Theorem:
Let A : Rn 	 be linear and f : Rn 	 continuous with ‖A− f ‖∞ < ∞. Then

htop( f ) ≥ htop(A),

where htop(·) = htop,d(·), d(v, w) = ‖v− w‖.

In the second theorem, Bowen uses his definition of topological entropy for
maps on arbitrary metric spaces, introduced in [8].

3.13 The Estimation from above for the Topological Entropy of a
Diffeomorphism (1979)

In [36], S. Katok proves the following upper estimate for the topological
entropy of a diffeomorphism:

3.35 Theorem:
Let f : M 	 be a C1-diffeomorphism on a compact Riemannian manifold.
Then

htop( f ) ≤ log max
x∈M

max
L⊂Tx M

|det(D f (x)|L)| ,

where the inner maximum is taken over all linear subspaces L of Tx M.

14The growth rate µ(α) of an endomorphism α : G → G of a finitely generated group
G is defined as follows: Let S = {g1, . . . , gn} be a set of generators for G. For g ∈ G let
LS(g) be the length of the shortest word in the alphabet S ∪ S−1 which represents g. Then
µ(α) := supg∈G lim supm→∞ Ls(αm(g))1/m. This quantity does not depend on the set of
generators.

http://www.ams.org/mathscinet-getitem?mr=0518545
http://www.ams.org/mathscinet-getitem?mr=0274707
http://www.ams.org/mathscinet-getitem?mr=0591188
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3.36 Corollary:
Under the assumptions of the above theorem, it holds that

htop( f ) ≤ log s( f ∗),

where s( f ∗) is the spectral radius of the linear map f ∗ induced by f on the
space Ω∗(M) =

⊕
k Ωk(M) of differential forms on M.

4 The Eighties

4.1 An Upper Estimation for Topological Entropy of Diffeomor-
phisms (1980)

In [61], Przytycki proves the following estimate, improving the result of
S. Katok in [36]:

4.1 Theorem:
Let f : M 	 be a C1+ε-diffeomorphism on a compact smooth Riemannian
manifold M and let µ be the Riemannian volume on M. Then

htop( f ) ≤ lim sup
n→∞

1
n

log
∫

M
‖D f n(x)∧‖dµ(x),

where D f n(x)∧ is the mapping induced by D f n(x) between the full exte-
rior algebras of Tx M and Tf n(x)M. Geometrically, ‖D f n(x)∧‖ is the max-
imal volume of the image of an arbitrarily dimensional cube of volume 1
under the differential D f n(x).

4.2 Remark:
The right-hand side in the above inequality is independent of the Rieman-
nian metric imposed on M.

4.2 Entropy of Piecewise Monotone Mappings (1980)

In [55], Misiurewicz and Szlenk prove (amongst others) the following for-
mula for the topological entropy of a piecewise monotone map on a com-
pact interval:

4.3 Theorem:
Let f : I 	 be a continuous, piecewise monotone map on a compact interval
I ⊂ R. Let cn denote the number of pieces of monotonicity of f n. Then

htop( f ) = lim
n→∞

1
n

log cn.

http://www.ams.org/mathscinet-getitem?mr=0579699
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4.4 Remark:
There are many other papers and books dealing with dynamics and in par-
ticular with topological entropy of interval maps. We only mention a few:
Alsedà, Llibre, Misiurewicz [2], Block & Coppel [5], de Melo & van Strien
[48], Milnor & Thurston [49], Misiurewicz [52], and L.-S. Young [71].

4.3 Lyapunov Exponents, Entropy and Periodic Orbits for Diffeo-
morphisms (1980)

In [33], A. Katok proves:

4.5 Theorem:
Let f : M 	 be a C1+ε-diffeomorphism on a compact smooth manifold M
and µ a Borel probability measure on M with non-zero Lyapunov expo-
nents. Then

hµ( f ) ≤ max
{

0, lim sup
n→∞

1
n

log Pn( f )
}

,

where Pn( f ) denotes the number of n-periodic points of f .

Moreover, he obtains the following corollary:

4.6 Corollary:
If M is two-dimensional, then

htop( f ) ≤ max
{

0, lim sup
n→∞

1
n

log Pn( f )
}

.

4.7 Remark:
In this paper, the author also provides an alternative characterization of
metric entropy with respect to ergodic measures for homeomorphisms on
compact metric spaces via (n, ε)-spanning sets.

4.4 The Metric Entropy of Diffeomorphisms (Part I and II) (1985)

In [42], for C2-diffeomorphisms, Ledrappier and Young give a complete
solution to the problem when Pesin’s formula from [59] holds for the metric
entropy. Moreover, they derive a general formula for the metric entropy.
Precisely, they prove the following two results:

4.8 Theorem:
Let M be a smooth compact manifold, f : M 	 a C2-diffeomorphism and µ
an f -invariant probability Borel measure on M. Then the equality

hµ( f ) =
∫

∑
i

max{0, mi(x)λi(x)}dµ(x)

http://www.ams.org/mathscinet-getitem?mr=1255515
http://www.ams.org/mathscinet-getitem?mr=1176513
http://www.ams.org/mathscinet-getitem?mr=1239171
http://www.ams.org/mathscinet-getitem?mr=970571
http://www.ams.org/mathscinet-getitem?mr=1002409
http://www.ams.org/mathscinet-getitem?mr=590412
http://www.ams.org/mathscinet-getitem?mr=0573822
http://www.ams.org/mathscinet-getitem?mr=0752794
http://www.ams.org/mathscinet-getitem?mr=1862379
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is equivalent to µ having absolutely continuous conditional measures on
unstable manifolds.15

4.9 Theorem:
Under the assumptions of the first theorem, in general, the formula

hµ( f ) =
∫

∑
i

max{0, γi(x)λi(x)}dµ(x)

holds, where γi(x) ∈ [0, mx] is the “dimension of µ in the direction of the
subspace Ei(x)”.16

4.5 Volume Growth and Entropy (1987)

In [69, 70], Yomdin proves Shub’s entropy conjecture for maps of class C∞:

4.10 Theorem:
Let M be a compact m-dimensional smooth manifold and f : M 	 a C∞-
map. For l = 0, 1, . . . , m let Sl( f ) be the logarithm of the spectral radius of
f∗ : Hl(M, R)→ Hl(M, R) and let S( f ) := maxl Sl( f ). Then

htop( f ) ≥ S( f ).

In order to relate Yomdin’s work to that of Newhouse, we explain his proof
more precisely: Define

R( f ) := lim
n→∞

1
n

log max
x∈M
‖D f n(x)‖.

For a Ck-map σ : Ql → M, Ql = [0, 1]l , let

v(σ) :=
∫

Ql
v(dσ),

where v(dσ) is the volume form on Ql induced by σ from a given Rieman-
nian metric on M. Let Σ(k, l) be the set of all Ck-mappings σ : Ql → M.
Moreover, let

v( f , σ, n) := v( f n ◦ σ).

15µ has absolutely continuous conditional measures on unstable manifolds if for every
measurable partition ξ subordinate to Wu, µ

ξ
x is absolutely continuous with respect to the

induced Riemannian measure on the unstable manifold Wu(x), for almost every x. Here, a
measurable partition ξ is said to be subordinate to Wu if for almost every x, ξ(x) ⊂ Wu(x)
and ξ(x) contains a neighborhood of x open in the submanifold topology of Wu(x), where
ξ(x) is the element of ξ containing x. Moreover, µ

ξ
x is a conditional measure on ξ(x).

16The quite technical definition of this will not be made precise here.

http://www.ams.org/mathscinet-getitem?mr=0889979
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Now, for k ≥ 1 and l ≤ m = dim M, define

vl,k( f ) := sup
σ∈Σ(l,k)

lim sup
n→∞

1
n

log v( f , σ, n),

vk( f ) := max
l

vl,k( f ),

v( f ) := v∞( f ).

For f being C1+ε, ε > 0, Newhouse [56] shows that

htop( f ) ≤ v( f ).

Yomdin proves the converse inequality. More precisely, he shows that

vl,k( f ) ≤ htop( f ) +
2l
k

R( f )

for k = 1, . . . , ∞ and l ≤ m. Taking the maximum over l and letting k go to
infinity, the inequality v( f ) ≤ htop( f ) follows in case f is of class C∞. The
proof of the above theorem then follows from the inequality

S( f ) ≤ htop( f ) +
2m
k

R( f ).

4.11 Remark:
The results of Yomdin also imply that the function htop : C∞(M) → R is
upper semicontinuous. In [57], Newhouse gives a different proof for this
fact.

4.6 Entropy and Volume (1988)

In order to formulate Newhouse’s main result in [56], we need the follow-
ing definition:

4.12 Definition:
Let (M, g) be a Riemannian manifold of class C1+α and f : M 	 a C1+α-
map. Let Ω be a compact f -invariant set. For 1 ≤ k ≤ dim M, let Dk be
the unit disc in Rk. A smooth k-disc in M is a C1+α-map γ : Dk → M. The
Riemannian metric g induces a norm ‖ · ‖k on each exterior power ΛkTx M
of the tangent space Tx M. Define the k-volume of γ by

‖γ‖ :=
∫

Dk

∥∥∥ΛkDγ(x)
∥∥∥

k
dλ(x),

where ΛkDγ(x) : ΛkTxDk → ΛkTγ(x)M is the linear map on the k-th exte-
rior power induced by the derivative Dγ(x), and dλ is the standard vol-
ume form on Dk. Let A be a collection of C1+α-discs in M whose dimen-
sions vary from 1 through dim M. Let Gk(Ω) be the Grassmann bundle

http://www.ams.org/mathscinet-getitem?mr=0967642
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of k-planes over Ω and let
⋃

k Gk(Ω) be the disjoint union. Assume that
M ⊂ RN for large N, so that for x, y ∈ M it is meaningful to write ‖y− x‖.
For γ ∈ A, γ : Dk → M, let

Lipα(γ) := sup
x 6=y

x,y∈Dk

‖Dγ(y)− Dγ(x)‖
‖y− x‖α

.

Then A is said to be ample for Ω if there exists K > 0 such that
(i) inf‖v‖=1 ‖Dγ(0)v‖ ≥ K−1 for γ ∈ A,

(ii) Lipα(γ) ≤ K for γ ∈ A,

(iii)
⋃

γ∈A im(Dγ(0)) is dense in
⋃

k Gk(Ω).
Let V be a compact neighborhood of Ω. For n ∈ N let Ws(n, V) =⋃

0≤j<n f−j(V). For a C1+α-disc γ : D → V define

G(γ, f , V) := lim sup
n→∞

1
n

log+
(∥∥∥ f n−1 ◦ γ|γ−1(Ws(n,V))

∥∥∥) ,

where log+(x) = max{0, log(x)}.

Newhouse’s main result reads as follows:

4.13 Theorem:
Let (M, g) be a Riemannian manifold of class C2 and f : M 	 a C1+α-map.
Let Ω be a compact f -invariant set, U a compact neighborhood of Ω in M,
and A an ample family of smooth discs for Ω. Then

htop( f |Ω) ≤ sup
γ∈A

G(γ, f , U).

4.14 Remark:
Newhouse also proves a special version of the above theorem for holomor-
phic maps on complex Hermitian manifolds, which allows him to derive
relations between the topological entropy and the degree, both for polyno-
mial maps on compact subsets of Rn, and for holomorphic maps on com-
plex projective space. These relations have also been shown by Gromov
[24].

4.7 Continuity Properties of Entropy (1989)

In [57], Newhouse proves the following theorem:

4.15 Theorem:
Let M be a compact smooth manifold. Then for every C∞-map f : M 	
the function µ 7→ hµ( f ) is upper semicontinuous. Moreover, the mapping
f 7→ htop( f ) from C∞(M) to R is upper semicontinuous.

http://www.ams.org/mathscinet-getitem?mr=2026895
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The proof in particular uses the results of Yomdin [69]. Moreover, New-
house concludes lower semicontinuity for surface diffeomorphisms from
a result of Katok [33]. Together with the above theorem this implies the
following corollary.

4.16 Corollary:
The map f 7→ htop( f ) is continuous for C∞-diffeomorphisms of two-
dimensional compact manifolds.

4.17 Remark:
From Newhouse’s theorem it follows that every C∞-map has ergodic in-
variant measures of maximal entropy, which is not true for maps of less
smoothness (see Misiurewicz [50]).

4.8 Expansiveness, Hyperbolicity and Hausdorff Dimension
(1989)

In [19], Fathi proves the following theorems:

4.18 Theorem:
Let f : M 	 be a C1-diffeomorphism on a Riemannian manifold M and
K ⊂ M a compact hyperbolic set with respect to f .17 Define

λ := max
{

lim
n→∞

1
n

log max
x∈K
‖D f n(x)|Es‖ , lim

n→∞

1
n

log max
x∈K

∥∥D f−n(x)|Eu
∥∥} .

Then it holds that

dimH(K) ≤ dimB(K) ≤ 2
htop( f |K)
−λ

.

4.19 Theorem:
Let ϕ : R×M→ M be a C1-flow on a Riemannian manifold M and K ⊂ M
a compact hyperbolic set for ϕ. Define

λ := max
{

lim
t→∞

1
t

log max
x∈K
‖Dϕt(x)|Es‖ , lim

t→∞

1
t

log max
x∈K
‖Dϕ−t(x)|Eu‖

}
.

Then it holds that

dimH(K) ≤ dimB(K) ≤ 2
htop(ϕ1|K)
−λ

+ 1.

17A compact set K is hyperbolic with respect to f if it is f -invariant and if
there exists an equivariant tangent bundle splitting TK M = Es ⊕ Eu such that
limn→∞

1
n log maxx∈K ‖D f n|Es ‖ < 0 and limn→∞

1
n log maxx∈K ‖D f−n|Eu ‖ < 0.

http://www.ams.org/mathscinet-getitem?mr=0889979
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5 The Nineties

5.1 Pseudo-Orbits and Topological Entropy (1990)

In [4], Barge and Swanson relate topological entropy to growth rates of
pseudo-orbits.

5.1 Definition:
Let f : X 	 be a continuous map on a compact metric space (X, d). A collec-
tion E of α-pseudo-orbits18 of f is (n, ε)-separated if, for each (xi), (yi) ∈ E,
(xi) 6= (yi), there is k ∈ {0, 1, . . . , n − 1} for which d(xk, yk) > ε. Let
S(n, ε, α) denote the maximal cardinality of an (n, ε)-separated set of α-
pseudo-orbits. The pseudo-entropy of f is defined by

hψ( f ) := lim
ε↘0

lim
α↘0

lim sup
n→∞

1
n

log S(n, ε, α).

Let E denote a set of (n, ε)-separated periodic α-pseudo-orbits of period n.
Thus, if (xi), (yi) ∈ E, (xi) 6= (yi), then (yi) and (yi) are periodic of period
n and d(xk, yk) > ε for some k ∈ {0, 1, . . . , n− 1}. Let P(n, ε, α) denote the
maximal cardinality of such a set, and define

Hψ( f ) := lim
ε↘0

lim
α↘0

lim sup
n→∞

1
n

log P(n, ε, α).

5.2 Theorem:
It holds that htop( f ) = hψ( f ) = Hψ( f ).

5.3 Corollary:
Let fn : X 	 be a sequence of continuous maps which converges uniformly
to f . Then

lim
ε↘0

lim sup
n→∞

htop( fn, ε) ≤ htop( f ).

5.4 Remark:
The equality htop( f ) = hψ( f ) has also been proved by Misiurewicz [53].

5.2 Topological Entropy of Nonautonomous Dynamical Systems
(1996)

In [38], Kolyada and Snoha extend the concept of topological entropy to
nonautonomous dynamical systems given by sequences of maps on a com-
pact topological space:

18An α-pseudo-orbit of f is a (finite or infinite) sequence (xn) in X such that
d( f (xn), xn+1) ≤ α for all n.
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5.5 Definition:
Let X be a compact topological space and f1,∞ := { fi}∞

i=1 a sequence of
continuous maps fi : X 	. For any i, n ∈N let

f 0
i = idX, f n

i := fi+(n−1) ◦ . . . ◦ fi+1 ◦ fi.

For any open cover A of X let

An
i :=

n−1∨
j=0

f−j
i (A),

and let N (·) denote the minimal cardinality of a subcover. Then define the
topological entropy of the sequence of maps f1,∞ on the cover A by

htop( f1,∞,A) := lim sup
n→∞

1
n

logN (An
1).

The topological entropy of the sequence of maps f1,∞ is then defined by

htop( f1,∞) := sup
A

htop( f1,∞,A),

where the supremum is taken over all open covers A of X.

Obviously, for an autonomous system this definition coincides with the
original one by Adler, Konheim and McAndrew [1]. The authors also
provide equivalent Bowen-like definitions of htop( f1,∞) via separated and
spanning sets, and they show that the topological entropy for nonau-
tonomous systems shares several properties with the “autonomous en-
tropy”. In particular, htop( f1,∞) is an invariant under equiconjugacy.19

Moreover, they prove the following nonautonomous version of Bowen’s
theorem stating that the entropy of a map equals the entropy of the restric-
tion to the nonwandering set:

5.6 Theorem:
Let f1,∞ be a sequence of equicontinuous selfmaps of a compact metric
space X. Then htop( f1,∞) = htop( f1,∞; Ω( f1,∞)), where Ω( f1,∞) denotes the
non-wandering set of f1,∞, defined as follows: A point x ∈ X is said to
be non-wandering if for every neighborhood U(x) of x there are positive
integers n and k with f k

n(U(x)) ∩U(x) 6= ∅. Then Ω( f1,∞) is the set of all
non-wandering points.

19Two nonautonomous dynamical systems f1,∞ and g1,∞ on spaces X and Y are called
topologically equiconjugate if there is an equicontinuous sequence (πi)i≥1 of homeomor-
phisms from X to Y such that also the sequence (π−1

i )i≥1 is equicontinuous and πi+1 ◦ fi =
gi ◦ πi for all i ≥ 1.

http://www.ams.org/mathscinet-getitem?mr=0175106
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Furthermore, the authors discover the following property of the classical
topological entropy, which was also proved independently in [14]:

5.7 Theorem:
Let X be a compact topological space and f , g : X 	 continuous maps.
Then

htop( f ◦ g) = htop(g ◦ f ).

5.8 Remark:
The approach of Kolyada and Snoha has been further developed, in par-
ticular, in Kolyada & Misiurewicz & Snoha [39], Zhang & Chen [72] and
Zhu & Zhang & He [73]. An analogous notion of metric entropy for nonau-
tonomous systems has been established in Kawan [37].

5.3 An Integral Formula for Topological Entropy of C∞-maps
(1998)

In [40], Kozlovski proves that Przytycki’s upper estimate for C1+ε-
diffeomorphisms in [61] becomes an equality for C∞-maps:

5.9 Theorem:
Let f : M 	 be a C∞-map on a compact smooth Riemannian manifold M
and let µ be the Riemannian volume on M. Then

htop( f ) = lim
n→∞

1
n

log
∫

M

∥∥D f n(x)∧
∥∥ dµ(x),

where D f n(x)∧ denotes the induced mapping between the full exterior al-
gebras of the tangent spaces Tx M and Tf n(x)M.

Kozlovski’s formula in general does not hold for maps of less smoothness,
as was already shown by Misiurewicz. Kozlovksi’s proof is partially based
on the results of Yomdin [69].

5.4 Some Relations between Hausdorff-dimensions and En-
tropies (1998)

In [13], Dai, Zhou and Geng prove the following result, which generalizes
and improves Ito’s early estimate in [31]:

5.10 Theorem:
Let (X, d) be a compact metric space and f : X 	 a continuous map. Define
the local Lipschitz constant of f with respect to d by

L( f , d) := lim
ε↘0

sup
d(x,y)<ε

x 6=y

d( f (x), f (y))
d(x, y)

.
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Then it holds that

htop( f ) ≤ max{0, log L( f , d)} · dimH(X, d),

where dimH(X, d) denotes the Hausdorff dimension of (X, d).

5.5 Lyapunov’s Direct Method in Estimates of Topological En-
tropy (1998)

In [6], Boichenko and Leonov prove some estimates for topological entropy
similar to those of Ito [31], Dai et al. [13], and Eden et al. [18]:

5.11 Theorem:
Let (X, d) be a compact metric space, f : X 	 a continuous map, and p :
X×X → (0, ∞) a positive continuous function. Let d′ be another metric on
X which is metrically equivalent to d. Set

k j := lim sup
ε↘0

sup
d′(x,y)<ε

x 6=y

[
d′( f j(x), f j(y))

d′(x, y)
· p( f j(x), f j(y))

p(x, y)

]
, j ∈N,

k := inf
j∈N

k1/j
j .

If k < ∞ and dimF(X) < ∞, then

htop( f ) ≤ max{0, log k} · dimF(X),

where dimF(X) denotes the lower box dimension of X.

5.12 Corollary:
Let ϕ : R+

0 × X → X be a continuous semiflow on a compact metric space
(X, d) such that ϕt is Lipschitz continuous and the Lipschitz constants are
bounded on an interval [0, t0]. Then

htop(ϕ1) ≤ max{0, ν} · dimF(X)

with

ν = lim
t→∞

1
t

log inf {ν̃ > 0 : d(ϕt(x), ϕt(y)) ≤ ν̃d(x, y) ∀x, y ∈ X} .

5.13 Theorem:
Consider an ordinary differential equation

ẋ = f (x), x ∈ Rn,

with f : Rn → Rn of class C1. Let K ⊂ Rn be a compact and convex invari-
ant set, i.e., ϕt(K) = K for all t ∈ R, where (ϕt) denotes the corresponding
flow. Let v : K → R be of class C1. Then

htop(ϕ1, K) ≤ max{0, k̃} · dimF(K)
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with
k̃ = max

x∈K
[γ (D f (x)) + v̇(x)] ,

where γ(·) denotes the logarithmic norm defined by

γ(A) = lim
ε↘0

‖I + εA‖ − 1
ε

for all A ∈ Rn×n,

and v̇(x) = 〈∇v(x), f (x)〉.

5.14 Theorem:
With the assumptions of the preceding theorem, it holds that

htop(ϕ1, K) ≤ max{0, k̃} · dimF(K)

with
k̃ = max

x∈K
[λ1(x) + v̇(x)] ,

where λ1(x) is the greatest eigenvalue of the symmetric matrix 1
2 (D f (x) +

D f (x)T).

6 The New Millenium

6.1 Axiomatic Definition of the Topological Entropy on the Inter-
val (2003)

In [3], Alsedà, Kolyada, Llibre and Snoha present two different sets of ax-
ioms which characterize the topological entropy function

f 7→ htop( f ), C(I)→ [0, ∞],

for continuous maps on a compact interval I. To formulate the main theo-
rems, we need some definitions:

6.1 Definition:
Let f , g ∈ C(I). We say that g is obtained from f by pouring water and we
write g ∈ PW( f ), if there exists an open set G ⊂ I (in the relative topology)
such that g is constant on each component of G and g(x) = f (x) for all
x ∈ I\G. For λ > 0 we define

CSλ := { f ∈ C(I) : f is piecewise linear with slopes either λ or− λ} .

Let f , g ∈ C(I). Recall that g is a factor of f or, equivalently, f is semicon-
jugate to g, if there is a surjective map φ ∈ C(I) such that φ ◦ f = g ◦ φ. If,
additionally, φ is non-decreasing, we say that g is a strong factor of f . The
class of all strong factors of f ∈ C(I) is denoted by SF( f ). A set P ⊂ I is

http://www.ams.org/mathscinet-getitem?mr=2012405
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called weakly f -invariant if f (P) ⊂ P. Let P be a finite subset of I. A map
f ∈ C(I) will be called P-monotone (respectively P-linear), if it is constant
on [0, min P] and [max P, 1], and f is (not necessarily strictly) monotone
(respectively, affine) on the closure of each connected component of I\P.

6.2 Theorem:
Let Ax : C(I)→ [0, ∞] satisfy the following properties:

(i) Ax is lower semicontinuous.

(ii) Ax(g) ≤ Ax( f ) if g ∈ PW( f ).

(iii) Ax(g) ≤ Ax( f ) if g ∈ SF( f ).

(iv) If f is a P-linear map, where P is a weakly f -invariant set and
Ax( f ) > 0, then f has a piecewise linear (not necessarily strong) fac-
tor g ∈ CSλ for some λ such that Ax( f ) = Ax(g).

(v) Ax( f ) ≤ log λ, whenever f ∈ CSλ is a P-linear map, where P is a
weakly f -invariant set and λ ≥ 1.

(vi) Ax( f ) ≥ log λ, whenever f ∈ CSλ is a P-linear map, where P is a
periodic orbit of f and λ > 1.

Then Ax = htop.

6.3 Theorem:
Let Ax : C(I)→ [0, ∞] satisfy the following properties:

(i) Ax is lower semicontinuous.

(ii) Ax(g) ≤ Ax( f ) if g ∈ PW( f ).

(iii) Ax(g) ≤ Ax( f ) if g ∈ SF( f ).

(iv) If f is a P-linear map, where P is a weakly f -invariant set and
Ax( f ) > 0, then f has a piecewise linear (not necessarily strong) fac-
tor g ∈ CSλ for some λ such that Ax( f ) = Ax(g).

(v) Ax( f ◦ g) = Ax( f ) + Ax(g), whenever f ∈ CSλ1 and g ∈ CSλ2 with
λ1, λ2 ≥ 1.

(vi) Ax(τ) = log 2, where τ is the standard tent map τ(x) = 1− |2x− 1|.
(vii) Ax( f ) = 0, whenever f ∈ CS1 has only fixed points, but no periodic

points of higher period.
Then Ax = htop.

6.2 Topological Entropy for Nonuniformly Continuous Maps
(2008)

In the paper [27], the authors, Hasselblatt, Nitecki and Propp, study and
compare three different extensions (from the literature) of the standard def-
inition of topological entropy for maps on not necessarily compact spaces:

http://www.ams.org/mathscinet-getitem?mr=2410955
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The Bowen-Compacta-Entropy (see [8]), the Friedland Entropy, and the Bowen-
Dinaburg-Entropy. In particular, they consider the case of nonuniformly
continuous maps.

http://www.ams.org/mathscinet-getitem?mr=0274707
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